Bis 2028 soll Predictive Analytics einen Marktwert von 41,52 Milliarden US-Dollar erreicht haben, so rechnet Statista.com voraus. Und schon heute hat die vorausschauende Analysemethode einen Wert von 5,29 Milliarden US-Dollar. Stellt sich doch nur noch die Frage: Wie Sie Predictive Analytics für Ihr erfolgreiches Online-Marketing nutzen?

Definition: Was ist Predictive Analytics?

Predictive Analytics (deutsch: Vorausschauende Analyse) ist ein Verfahren, bei dem historische Datenquellen verwendet werden, um ein mathematisches Modell zu erstellen, welches Ereignisse in der Zukunft voraussagen. Das hört sich zunächst kompliziert an, doch das Grundprinzip begegnet Ihnen fast täglich: Es ist vergleichbar mit der Prognose der Regenwahrscheinlichkeit an einem bestimmten Datum.

Wichtig dabei ist, dass die Wahrscheinlichkeit von Wirbelstürmen oder der Temperatur damit nicht vergleichbar ist. Auch bei Predictive Analytics im Marketing lässt sich ein mathematisches Modell nur erstellen, wenn die Daten der gleichen Art verwendet werden. Mehr dazu bei den Voraussetzungen für Predictive Analytics.

Warum ist Predictive Analytics so wichtig?

Im Bereich Online-Marketing spielt Predictive Analytics eine so große Rolle, weil es maßgeblich dazu beitragen kann, dass Ihre Marketingkampagnen von Erfolg gekrönt sind. Mit der Predictive Analytics können Sie das Kaufverhalten und die Kaufgewohnheiten Ihrer Zielgruppe vorhersagen. Diese Vorhersagen können Sie anschließend nutzen, um Ihre Marketingkampagne noch besser auf Ihre Zielgruppe auszurichten und so Ihre Conversions steigern. Doch nicht nur Marketingkampagnen, auch Vertriebsprozesse und Kundendienstleistungen können mit der prädiktiven Analyse optimiert werden. Insbesondere im Bereich Customer-Relationship-Management (CRM) ist Predictive Analytics also ein wichtiges Aufgabengebiet. 

Doch wie funktioniert Predictive Analytics konkret? 

Predictive Analytics Tools können Kaufabsichten bzw. den idealen Kunden erkennen, indem Sie die verfügbaren Daten aus der Vergangenheit analysieren und anhand der Ergebnisse Personen finden, deren Daten mit denen idealer Kunden übereinstimmen. Ebenso können Leads mithilfe der Predictive Analytics bewertet werden. Auch hierfür werden historische Daten sowie Absichtdaten genutzt, um potenzielle Kunden zu erkennen. Dabei wird auch die Kaufwahrscheinlichkeit gemessen, auf welche Art die Kunden kontaktiert und welche Informationen an sie übermittelt werden sollten.

Hierfür können Sie Predictive Analysis nutzen:

  • Personalisierte Customer Experience 
  • Gewinnung neuer passender Kunden 
  • Optimierung des Online-Marketingbudgets
  • Optimierung der Logistik und der Bestandsmenge

Wie funktioniert Predictive Analytics im Online-Marketing?

Wetterfrösche machen also im Grunde nichts anderes als Predictive Analytics, wenn Sie uns voraussagen, dass es die nächsten Tage regnen wird. Doch wie funktioniert Predictive Analytics im Online-Marketing? Wie können Sie das Modell der vorausschauenden Analyse anwenden, um Ihre Marketingkampagne erfolgreich zu machen?

Voraussetzungen für Predictive Analytics

Bevor Sie mit einer Predictive Analysis starten können, müssen zunächst die Grundlagen geklärt werden. Denn Predictive Analytics funktioniert nicht, ohne dass Sie einige Voraussetzungen in Sachen Daten und Co. erfüllen. Welche Voraussetzungen das sind, wollen wir Ihnen genauer erklären: 

Daten
Die Daten sind das Fundament jeder Predictive Analysis und stecken gleichzeitig ihren Rahmen. Sie können sich sicher schon denken: Je besser die Qualität Ihrer Daten, desto besser Ihre Prognose. Die Qualität Ihrer Daten zeichnet sich durch Ihre Relevanz aus. Das bedeutet, dass Sie im Voraus festlegen müssen, mit welcher Thematik sich Ihre Predictive Analytics beschäftigt. Anschließend können Sie die Daten auswählen, welche für die Thematik relevante Informationen bereitstellen. 

Infrastruktur

Relevante Daten zu erkennen setzt außerdem voraus, dass Sie Ihre Daten in einem sinnvollen und übersichtlichen System organisieren. Ein solches Datenmanagementsystem hilft Ihnen dabei, die passenden Daten schnell zu finden. Sie ist die Infrastruktur Ihrer Predictive Analytics. Machen Sie sich Gedanken darüber, wie Sie Ihre Infrastruktur am besten aufbauen – das kann in jedem Unternehmen anders aussehen. Beispielsweise können Sie Ihre Daten in einem großen Data Warehouse oder in einer kleinen Datenbank sammeln. Zudem müssen Sie überlegen, ob Sie Ihre Algorithmen selbst programmieren oder eine Software verwenden?

Mitarbeiter

Predictive Analytics ist ein sehr umfassendes Thema und nichts, mit dem man sich mal eben nebenbei beschäftigt. Sie benötigen ein Team, in dem zum einen Mitarbeiter sind, die mit der Verwaltung und Speicherung der Daten beschäftigt sind, und zum anderen Mitarbeiter, die die Algorithmen verstehen, anwenden und interpretieren können – beispielsweise Data Engineer, Datenanalytiker oder Data Scientists.

Leitfaden für eine Predictive Analysis

Bei einer Predictive Analysis wird Schritt-für-Schritt vorgegangen. Außerdem handelt es sich um einen iterativen, also wiederholenden Prozess. Das bedeutet, Sie müssen wahrscheinlich den Prozess mehrmals wiederholen, um Erfolge zu erzielen. Wir wollen Ihnen die theoretischen Schritte der Predictive Analysis anhand eines einfachen Praxisbeispiel zeigen:

Schritte-Predictive-Analysis-Prozess

Schritt 1: Zielsetzung 

Setzen Sie die Ziele Ihrer Predictive Analysis fest.
In der Praxis sollten Sie sich folgende Frage stellen: Welche potenziellen Kunden werden sich innerhalb der nächsten 30 Tage für meine Angebote anmelden?

Schritt 2: Datenerfassung 

Prüfen Sie, welche Datenquellen Ihnen zur Verfügung stehen und führen Sie diese zusammen.
Für unser Beispiel benötigen Sie historische Daten, demografische Daten und Daten zu den genutzten Kanälen sowie eine Liste potenzieller Kunden.

Schritt 3: Datenprüfung und -verarbeitung 

Wie bereits erwähnt, ist die Qualität Ihrer Daten maßgeblich für Ihre Predictive Analytics. Prüfen Sie also die vorliegenden Daten und bereinigen Sie gegebenenfalls, was nicht passt.
Prüfen Sie Ihre Daten, um Fakten zu ermitteln, z. B. ob die durchschnittliche Konversionszeit zwischen den Kanälen variiert und ob demografische Merkmale mit diesen Zeiträumen korrelieren.

Schritt 4: Prädiktives Modell erstellen 

Erstellen Sie das prädikative Modell, also die eigentliche Predictive Analysis.
Wie oben beschrieben, sollten Sie hierfür festlegen, ob Sie das Modell selbst erstellen oder mithilfe einer Software.  

Schritt 5: Modelltest und Optimierung 

Geben Sie die Daten in Ihr Modell ein und testen es. Anschließend können Sie es entsprechend optimieren.
Testen Sie Ihr Modell und die historischen und demografischen Daten etc., um zu überprüfen, ob sie noch aktuell sind.

Schritt 6: Integration 

Bis zur Integration in die Unternehmensprozesse müssen Sie eventuell ein paar Durchläufe Ihrer Predictive Analysis gemacht haben. Zum Schluss können Sie die gewonnenen Erkenntnisse für Ihr Online-Marketing nutzen.
Richten Sie Ihr Online-Marketing intensiver nach den potenziellen Kunden aus, die sich innerhalb der nächsten 30 Tage für Ihre Angebote anmelden werden.

  • Bedenken Sie beim Umgang mit Daten immer, dass diese stark beeinflusst werden können, beispielsweise durch die Saison, Krisen oder neueste Ereignisse.

Vorteile der Predictive Analytics 

  • Kosteneffizient

  • Ressourcenschonend, sowohl materiell als auch zeitlich

  • Risikominimierung

  • Optimierung Ihrer Marketingkamagnen

  • Verbesserung des operativen Geschäfts

Predictive Analytics und Big Data

Big Data und Predictive Analytics werden oft verwechselt, sind aber nicht das gleiche. Bei der Big Data werden riesige Mengen an unterschiedlichen Daten gesammelt. Da es sich dabei um Daten von Milliarden von Menschen handelt, müssen diese erst ausgewertet werden. Mithilfe der Predictive Analytics werden Muster und Zusammenhänge der Daten erfasst. Erst mit dieser prädikativen Analyse kann das Potenzial von Big Data weiter ausgeschöpft und die Daten nutzbar gemacht werden. Doch auch die Predictive Analysis profitiert von Big Data. Denn der Wert einer Predicitve Analysis steigt mit der Zunahme der Datenmenge. 

Fazit

Innerhalb der Branche geht man schon fest davon aus: Die Predictive Analysis ist die Zukunft des Marketings. Wer will schon nicht wissen, was in der Zukunft passiert? Oder zumindest die eigene Marketingkampagne ideal auf die eigene Zielgruppe und potenzielle Kunden abstimmen? Genau dafür sollten Sie Predictive Analytics nutzen. 

gif;base64,R0lGODlhAQABAAAAACH5BAEKAAEALAAAAAABAAEAAAICTAEAOw==

Neueste Beiträge